Neurobionics Lab

Modulation of Human Ankle Impedance during Late Stance of Gait


When we stand, walk or run, our brain and spinal cord send signals to our muscles to coordinate their movement. A combination of these signals and the physical properties of our limbs determines how we interact with the environment. One way to characterize this interaction is by measuring a property called joint impedance. Joint impedance determines the relationship between how a joint moves and the forces and torques it experiences. This relationship is commonly expressed as a combination of three parameters –

Stiffness – Resistance generated due to the degree of a rotation.
Viscosity – Resistance generated due to the speed of a rotation.
Inertia – Resistance generated due to the acceleration of a rotation.

Many of the difficulties a stroke survivor experiences while walking are caused by changes in leg joint mechanics. Medically, these changes are referred to as hemiparesis, contracture, and/or spasticity and hypertonia. Mechanically these are analogous to changes in stiffness and viscosity. Studying how joint impedance is altered after injury or pathology and how different rehabilitation techniques affect this property could help us advance the standard of clinical care.

Most approaches in the development of robotic prostheses are focused on recreating how people move normally but do not consider how people respond to changes in their normal behavior. For e.g. how does someone change their behavior if they unexpectedly bump into another person, or walk on an uneven bit of ground? Expanding the control of such devices to include impedance would allow prosthetic device users to more naturally respond to such scenarios by providing more intuitive control of their device, increasing their stability and leading to more versatile mobility.


Experimental: Participants walk or run across a walkway containing a robotic platform, termed the Perturberator robot. At various points throughout the stance phase, the Perturberator applies small rotations to the ankle. We measure the motion of the ankle using motion capture or a goniometer, and the forces applied by the person on the ground using a force platform attached to the Perturberator robot. We use the position of the ankle and the forces being applied on the ground to measure the torque generated about the ankle.

Analytical: As the participant walks across the platform they change their ankle angle and torque. This change is a combination of the natural motion of their body and their response to the motion of the platform. To estimate ankle impedance we separate these components by subtracting the torque-angle profiles occurring naturally during gait from perturbation trials. Impedance parameters – stiffness, viscosity and inertia –  are estimated using mathematical models.

Contributors: Amanda Shorter, Varun Joshi, Elliott Rouse.


Shorter A. L., Richardson, J. K., Finucane, S.B., Joshi, V., Gordon, K.E., & Rouse, E. J., Characterization and Clinical Implications of Ankle Impedance During Walking In Chronic Stroke, In Review, Nature Scientific Reports.

Shorter, A. L., & Rouse, E. J. (2018). Ankle Mechanical impedance during the stance phase of running. IEEE Transactions on Biomedical Engineering, 26(1), 135-143.

Shorter, A. L., & Rouse, E. J. (2018). Mechanical impedance of the ankle during the terminal stance phase of walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(1), 135-143.

Lee, H., Rouse, E. J., & Krebs, H. I. (2016). Summary of Human Ankle Mechanical Impedance during Walking. IEEE Journal of Translational Engineering in Health and Medicine 4, 1-7. doi/org/10.1109/JTEHM.2016.2601613

Rouse, E. J., Hargrove, L. J., Perreault, E. J., & Kuiken, T. A. (2014). Estimation of human ankle impedance during the stance phase of walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(4), 870-878.

Rouse, E. J., Hargrove, L. J., Perreault, E. J., Peshkin, M. A., & Kuiken, T. A. (2013). Development of a robotic platform and validation of methods for estimating ankle impedance during the stance phase of walking. ASME. Journal of Biomechanical Engineering, 135(8), 081009.